JSON   RDF   ISO19115/ISO19139 XML

Travelling Stock Route Conservation Values


This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.

This shapefile was constructed by combining crown TSR spatial data, information gathered from Rural Lands Protection Board (RLPB) rangers, and surveyed Conservation and Biodiversity data to compile a layer within 30 RLPB districts in NSW. The layer attempts to spatially reflect current TSRs as accurately as possible with conservation attributes for each one.

Dataset History

The initial process in production involved using the most up to date extract of TSR from the crown spatial layer as a base map, as this layer should reasonably accurately spatially reflect the location, size, and attributes of TSR in NSW. This crown spatial layer from which the TSR were extracted is maintained by the NSW Department of Lands. The TSR extract is comprised of approximately 25,000 polygons in the study area. These polygons were then attributed with names, IDs and other attributes from the Long Paddock (LP) points layer produced by the RLPB State Council, which contains approximately 4000 named reserves throughout the study area. This layer reflects the names and ID number by which the reserves were or are currently managed by the RLPB's. This layer was spatially joined with the TSR polygon layer by proximity to produce a polygon layer attributed with RLPB reserve names and ID numbers. This process was repeated for other small datasets in order to link data with the polygon layer and LP reserve names. The next and by far the most time consuming and laborious process in the project was transferring the data gathered from surveys undertaken with RLPB rangers about each reserve (location, spatial extent, name, currency conservation value and biodiversity). This spatial information was annotated on hard copy maps and referenced against the spatial join making manual edits where necessary. Edits were conducted manually as the reference information was only on hard copy paper maps. Any corrections were made to the merged layer to produce an accurate spatial reflection of the RLPB reserves by name and ID. This manual editing process composed the bulk of the time for layer production as all reserves in each RLPB district in the study area had to be checked manually. Any necessary changes had to then be made to correct the spatial location of the reserve and ensure the correct ID was assigned for attributing the conservation data. In approximately 80% of cases the spatial join was correct, although this figure would be less where long chains of TSR polygons exist. The majority of time was devoted to making the numerous additions that needed to be incorporated. A spreadsheet based on the LP point layer was attributed with the LP point [OBJECTID] in order to produce a unique reference for each reserve so that conservation and biodiversity value data could be attributed against each reserve in the spatial layer being produced. Any new reserves were allocated [OBJECTID] number both in the GIS and the spreadsheet in order to create this link. All relevant data was entered into the spreadsheet and then edited to a suitable level to be attached as an attribute table. Field names were chosen and appropriate an interpretable data formats each field. The completed spreadsheet was then linked to the shapefile to produce a polygon TSR spatial layer containing all available conservation and biodiversity information. Any additional attribute were either entered manually or obtained by merging with other layers. Attributes for the final layer were selected for usability by those wishing to query valuable Conservation Value (CV) data for each reserve, along with a number of administrative attributes for locating and querying certain aspects of each parcel. Constant error checking was conducted throughout the process to ensure minimal error being transferred to the production. This was done manually, and also by running numerous spatial and attribute based queries to identify potential errors in the spatial layer being produced. Follow up phone calls were made to the rangers to identify exact localities of reserves where polygons could not be allocated due to missing or ambiguous information. If precise location data was provided, polygons could be added in, either from other crown spatial layers or from cadastre. These polygons were also attributed with the lowest confindex rating, as their status as crown land is unknown or doubtful. In some cases existing GIS layers had been created for certain areas. Murray RLPB has data where 400+ polygons do not exist in the current crown TSR extract. According to the rangers interviewed it was determined the majority of these TSR exist. This data was incorporated in the TSR polygon by merging the two layers and then assigning attributes in the normal way, ie by being given a LP Name and ID and then updated from the marked up hard copy maps. In the confidence index these are given a rating of 1 (see confindex matrix) due to the unknown source of the data and no match with any other crown spatial data. A confidence index matrix (confindex) was produced in order to give the end user of the GIS product an idea as to how the data for each reserve was obtained, its purpose, and an indication to whether it is likely to be a current TSR. The higher the confindex, the more secure the user can be in the data. (See Confidence Index Matrix) This was necessary due to conflicting information from a number of datasets, usually the RLPB ranger (mark up on hard copy map) conflicting with the crown spatial data. If these conflicting reserves were to be deleted, this would lead to a large amount of information loss during the project. If additions were made without sufficient data to determine its crown status, currency, location, etc (which was not available in all cases) the end user may rely on data that has a low level of accuracy. The confindex was produced by determining the value of information and scoring it accordingly, compounding its value if data sources showed a correlation. Where an RLPB LP Name and ID point was not assigned to a polygon due to other points being in closer proximity these names and ID are effectively deleted from the polygon layer. In a number of cases this was correct due to land being revoked, relinquished and/or now freehold. In a number of cases where the TSR is thought to exist and a polygon could not be assigned due to no info available (Lot/DP, close proximity to a crown reserve, further ranger interview provided no info, etc etc). For these cases to ensure no information loss a points layer was compiled from the LP points layer with further info from the marked up hard copy maps to place the point in the most accurate approximate location to where the reserve is though to exist and then all CV data attached to the point. In many of these cases some further investigation could provide an exact location and inclusion in the TSR poly layer. The accuracy of the point is mentioned in the metadata, so that the location is not taken as an absolute location and is only to be used as a guide for the approximate location of the reserve. Topology checks were conducted to eliminate slivers in the layer and to remove duplicate polygons. Where two crown reserves existed on the same land parcel, the duplicate polygon was deleted and unique attributes (Crown Reserve Number, Type, and Purpose) were transferred. Once the polygon layer was satisfactorily completed, a list of the LP points not allocated to polygons was compiled. Any points (reserves) that were said to have been revoked or relinquished were then removed from this list to provide a list of those that are said to be current. An extract of the LP points layer was then produced with only the aforementioned points. These points were then attributed with the same conservation and biodiversity data as the polygon layer, in an attempt to minimise the amount of information loss.

Dataset Citation

"NSW Department of Environment, Climate Change and Water" (2010) Travelling Stock Route Conservation Values. Bioregional Assessment Source Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/198900d5-0d06-4bd0-832b-e30a7c4e8873.

Data and Resources

Additional Info

Field Value
Title Travelling Stock Route Conservation Values
Type Dataset
Language eng
Licence Creative Commons Attribution 3.0 Australia, http://creativecommons.org/licenses/by/3.0/au/, (c) Office of Environment and Heritage NSW
Data Status active
Update Frequency never
Landing Page https://data.gov.au/data/dataset/8d55e731-8702-4b56-b7b8-e1f635f46329
Date Published 2016-03-30
Date Updated 2022-04-13
Contact Point
Bioregional Assessment Program
Temporal Coverage 2016-03-30 00:00:00
Geospatial Coverage POLYGON ((152.4995 -37.27312, 152.4995 -28.29022, 143.3483 -28.29022, 143.3483 -37.27312, 152.4995 -37.27312))
Jurisdiction New South Wales
Data Portal data.gov.au
Publisher/Agency Bioregional Assessment Program