Australia-wide 30 m machine learning-derived canopy height models composites: best pick and median

Created 20/11/2025

Updated 20/11/2025

This dataset is part of the OzTreeMap project and provides two new 30 m spatial resolution canopy height products for continental Australia: (1) the best-pick canopy height model (pick-CHM); and (2) the median canopy height model (med-CHM). Both products were generated and validated as part of the study titled “Accuracy of Machine Learning-Derived Canopy Height Models at Continental Scale.” The pick-CHM is a composite model in which each 30 m pixel adopts the most accurate canopy height value among four publicly available machine learning-derived CHMs—Tolan et al. (2024), Lang et al. (2023), Potapov et al. (2021), and Liao et al. (2020)—based on the vegetation class (Scarth et al., 2019) that the pixel represents and our vegetation-specific accuracy assessment (see lineage). The med-CHM represents a pixel-wise median composite of the same four CHMs and achieved the highest overall accuracy when validated against 22,967 km² of reference airborne point cloud data across 16 Australian vegetation classes. Both datasets are provided as single-band GeoTIFF rasters in EPSG:3577 (Australian Albers) coordinate reference system, with 30 m spatial resolution and float32 data type. These CHMs offer improved accuracy and spatial consistency compared to the individual global products supporting continental-scale applications in forest structure monitoring, carbon accounting, and ecosystem assessment. References Lang, N., Jetz, W., Schindler, K., Wegner, J.D., 2023. A high-resolution canopy height model of the Earth. Nat Ecol Evol 7, 1778–1789. https://doi.org/10.1038/s41559-023-02206-6 Liao, Z., van Dijk, A.I.J.M., He, B., Larraondo, P.R., Scarth, P.F., 2020. Woody vegetation cover, height and biomass at 25 m resolution across Australia derived from multiple site, airborne and satellite observations. Int. J. Appl. Earth Obs. Geoinf. 93, 102209. https://doi.org/10.1016/j.jag.2020.102209 Potapov, P., Li, X., Hernandez-Serna, A., Tyukavina, A., Hansen, M.C., Kommareddy, A., Pickens, A., Turubanova, S., Tang, H., Silva, C.E., Armston, J., Dubayah, R., Blair, J.B., Hofton, M., 2021. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165. https://doi.org/10.1016/j.rse.2020.112165 Scarth, P., Armston, J., Lucas, R., Bunting, P., 2019. A structural classification of Australian vegetation using ICESat/GLAS, ALOS PALSAR, and Landsat sensor data. Remote Sens. 11, 147. https://doi.org/10.3390/rs11020147 Tolan, J., Yang, H.-I., Nosarzewski, B., Couairon, G., Vo, H.V., Brandt, J., Spore, J., Majumdar, S., Haziza, D., Vamaraju, J., Moutakanni, T., Bojanowski, P., Johns, T., White, B., Tiecke, T., Couprie, C., 2024. Very high resolution canopy height maps from RGB imagery using self-supervised vision transformer and convolutional decoder trained on aerial lidar. Remote Sens. Environ. 300, 113888. https://doi.org/10.1016/j.rse.2023.113888

Files and APIs

This dataset has no data

Additional Info

Field Value
Title Australia-wide 30 m machine learning-derived canopy height models composites: best pick and median
Language English
Licence Not Specified
Landing Page https://data.gov.au/data/dataset/df4e4120-8151-5791-adb7-2b66dca0c76f
Contact Point
CSIRO Data Access Portal
CSIROEnquiries@csiro.au
Reference Period 01/01/2000
Geospatial Coverage Australia
Data Portal CSIRO DAP

Data Source

This dataset was originally found on CSIRO DAP "Australia-wide 30 m machine learning-derived canopy height models composites: best pick and median". Please visit the source to access the original metadata of the dataset:
https://data.csiro.au/collection/csiro:69294