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Executive Summary 

 

Context 
The condition of the floodplain and riverine forests of the Murray Darling Basin (the Basin) has been 

declining over recent decades. These forests provide and support nationally important social, 

environmental, cultural and material resources.  Governments and the community have invested 

significant resources towards arresting this decline and improving the ecological health of the Basin.  

Reliable and repeatable monitoring and reporting mechanisms are required to provide evidence to 

support ongoing investment and decision making.  

 
The Murray Darling Basin Authority MDBA has developed a robust approach to monitoring the 

condition of riverine and floodplain forest that uses both field data and contemporaneous 

summaries of satellite imagery.  Such modelling allows the MDBA to report on the condition of the 

basins flood dependent forests on a regular basis.  Regulated river basin systems are dynamic and 

therefore models need to be updated periodically to incorporate new data.  This can include the 

sampling of novel (or previously un-encountered) hydrological events, and/or where new field data 

has been acquired from previously un-sampled floodplain regions of the basin.  

 

Aims 
The primary aim of this project is to deliver an updated ‘Stand Condition Monitoring Tool (the Tool) 
for use by the Murray-Darling Basin Authority (MDBA).   
 
The purpose of this report is to provide: 

1. Details of updates for the algorithmic models of stand condition based upon Landsat 
satellite imagery data and recently acquired field data. 

2. Details of the incorporation of these models to deliver the updated Stand Condition 
Monitoring Tool. 

3. Recommendations on the prospects for future improvements to stand condition models, 
particularly relating to ancillary remote-sensed data, the revision of the base layers used, 
and improvements to field data collection. 

 
Importantly, this report needs to be read and considered in conjunction with the ‘Stand Condition 
Monitoring Tool Users Guide’, which provides details how to install and use the Tool.   
 
Implications 
The Tool allows the MDBA to make up-to-date appraisals of the condition of floodplain and riparian-

associated native vegetation forms across the Basin.  Newly acquired Landsat imagery that are 

compiled using similar protocols used for this and earlier reports can be incorporated into this Tool.  

These new spatial data will enable the production of updated stand condition modelled outputs in 

future years.  
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Introduction  

Notable declines in the condition of the floodplain forests and woodlands have been evident across 

the Murray-Darling Basin over many decades (Cunningham et al., 2009b).  These detrimental 

changes are associated with river regulation, water extraction for agriculture declines in rainfall 

across the Basin (Cunningham et al. in press).   

 

In 2002 the then Murray-Darling Basin Commission (MDBC) instituted ‘The Living Murray’ (TLM) 

program which aimed to restore the health of the Basin by returning water to many of the natural 

floodplains across the it (MDBC, 2002).  The ‘TLM’ program comprised a variety of activities at a 

series of Icon Sites including the construction and development of infrastructure supporting positive 

environmental effects through water recovery, environmental watering and monitoring.  The 

physical and geographic scale of the region led to the decision in 2008 to undertake monitoring of 

the changes in the environmental condition of forests and woodlands across the Basin through using 

remote sensing technologies.  

 

Previous stand condition modelling 

Several approaches have been taken to assess and report on the condition or quality of native 

vegetation across the Basin.  The initial models and maps of stand condition related to river redgum 

and black box stands across TLM Icon Sites, by using a combination of field data (175 reference sites) 

and Landsat satellite imagery (Cunningham, et al., 2009).  This work suggested that approximately 

79% of these vegetation communities were in a stressed state.  These models were successfully 

developed using an artificial neural network modelling framework, using structural data from the 

remote sensed imagery and field data (R2 = 0.68).  When these models were applied retrospectively 

to data for the Icon Sites from 2003 to 2008 using historic Landsat imagery, there was a discernible 

trajectory of increasing stress on these ecosystems.  Importantly, it was recognised that this general 

approach was capable of reporting on condition states over both time and space.  Furthermore, it 

was possible to detect and document decreased levels of vegetation stress for regions associated 

with environmental watering events between 2003 and 2009, as well as a continued decline for 

regions across the Murray River floodplain where water was more restricted (Cunningham et al. 

2009a).  

 

A follow-up study in 2010 using an updated field data and similar modelling approaches displayed 

poorer model performance (R2 = 0.58; Cunningham et al., 2011), which was attributed to imbalances 

in stratification of the field based data, where the extremes of the condition states (both good and 

poor condition) were not widely surveyed, and that majority of the data (77%) related to sites in 

poor to moderate condition.  The effect of the distribution of training data was to ‘flatten’ the 

model, decreasing model performance at the ‘tails’, and this was addressed statistically by the linear 

transformation of the predictions (Cunningham et al. 2014).  This scaled and enforced a direct 

relationship between the stand condition and full range of condition states observed in the field and 

improved the statistical performance of the models.  
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A subsequent modelling investigation during 2013 altered the approach by using RapidEye imagery, 

following the demise of the Landsat 5 satellite.  This was accompanied by delays in field data 

acquisition in response to extensive floods, and time allowed for ecological responses to this natural 

event.  This modelling study coincided with the development of the original Basin-wide Stand 

Condition Modelling Tool (Cunningham et al. 2013a), and therefore necessitated the need to re-

model stand condition for the three preceding years to ensure consistent model performance within 

the tool.  These stand condition models provided relatively strong model fit for TLM Icon Sites (R2 = 

0.75 and 0.61; 2009 and 2010 respectively).  Building a multi-year model from surveys recorded 

during two drought years, and the year following extensive floods provided substantial 

improvements for the predictions of condition (R2 = 0.87), when compared with models based on 

individual years (R2 = 0.60-0.75). The Stand Condition Tool built from the multi-year model provided 

strong predictions (R2 = 0.84) for a survey of 50 sites not used for modelling stand condition.  

Together these results suggested that the Stand Condition Tool would be able to predict stand 

condition under a range of environmental setting and conditions.  The combination of these studies 

demonstrated that the stand condition modelling approach provided a robust framework for 

assessing, understanding and reporting on stand condition over time, and across extensive spatial 

extents.  

 

This current report details the approaches taken to update the models of stand condition, and the 

software tools that enable the MDBA to develop mapped outputs of stand condition across the 

Murray-Darling Basin.  This was achieved by incorporating additional field observations recently 

acquired across the Basin in 2014, 2015 and late 2016 / early 2017, in conjunction with updates to 

the library of remote-sensed data available to develop models.  In contrast to previous documents, 

this report does not report on current stand condition, but on the production of a software tool that 

enables the MDBA to produce up-to-date appraisals of stand condition on an as-needs basis, and 

therefore provides the ability to monitor stand condition over time.  This monitoring tool will 

provide useful expressions of stand condition, until the models can be revised with new field data in 

the future.  This software is provided with an installation manual, and an additional tool that allows 

users to view input imagery and modelled outputs.  
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Methods 

Study area 

The Murray-Darling Basin covers a substantial portion of the Australian continent (1,0589,000 sq 

km), and the current study covers the full extent of the Basin, coincident with Landsat data.   

 

This large study area and spatial data sets contains many other vegetation and land cover classes 

beyond the woody vegetation forms of the riverine and floodplain systems.  Consequently, the 

model will make predictions outside the extent of these target systems, and careful consideration 

will need to be given by the users of the tool on how the models are constrained or limited to 

predicting.  This issue will be addressed later in this document, and in the Stand Condition 

Monitoring Tool User’s Guide. 

 

Floodplain vegetation types 

The floodplains of the Murray-Darling Basin contain a range of plant communities.  Many of these 

vegetative forms can be difficult to accurately differentiate using data on the reflected or emitted 

radiation as detected by satellites.  Broad vegetation types were previously modelled from 

vegetation plot data and remotely sensed imagery across the entire basin as part of a pilot study 

(Table 1; Cunningham et al 2013c).  These base maps of forest types aided the modeling of stand 

condition, and are also important in identifying the relevant floodplain forests and woodlands where 

the model will most reliably apply.  

 

Floodplain vegetation type Dominant taxa 

River red gum forest and woodlands  Eucalyptus camaldulensis 

Black box woodlands Eucalyptus largiflorens 

Coolibah woodlands Eucalyptus coolabah 

River Cooba woodlands Acacia stenophylla 

River Oak Forest Casaurina cunninghamia 

Lignum shrublands Muehlenbeckia florulenta & Muehlenbeckia horrida 

Grasslands Poaceae 

Wetlands Species tolerant of > 6 months inundation 

 

Table 1 Dominant taxa that defined the target floodplain vegetation types.   

(Note: The current Condition Monitoring Tool focuses on vegetation types 

dominated by tree species, and does not consider those types displayed in grey) 
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Field observations (dependent data) 

In 2016, the MDBA commissioned several ecological consultancies to collect contemporary field data 

from 605 sites across the Basin (shown as pink crosses in Figure 1).  This data was acquired in the 

latter part of 2016 and the first few months of 2017, with two sites (CMN02 and CMN03) visited in 

both 2016 and 2017.  Of these site assessments 175 sites were repeat evaluations, while the 

remainder (430 sites) were the first surveys at new locations, and therefore provide data from new 

environmental settings unknown to previous model versions. 

The data from the 430 new sites has been incorporated into a database which now contains a total 

of 1754 stand condition survey observations for modelling.  In summary, these observations relate 

to 912 unique sites, where observations have been made between 2009 and 2017.  A summary of 

the additions of observations to the database are provided in Table 2, and the spatial distributions of 

the recent observations are displayed in Figure 1. 

 

Year of Observations Site Count 

2009 175 

2010 175 

2013 172 

2014 475 

2015 150 

2016 175 

2017 432 

 

Table 2  Sequence of data accessions to the stand condition database across years 

 

The field assessments are devised to record data, and to report on estimates of the live basal area of 

the trees at a site (LBA), the crown extent (CE), and an index of the total plant area (PAI).  The field 

methods have been previously documented in Cunningham et al. (2009, 2011), and were updated in 

Cunningham et al. (2013).  

LBA assessments are scaled from 0-10, while CE is scored on a 0-5 scale, and the PAI is scored on a 0-

2 scale.  The scores assigned to each site measurement are combined into an overall site Condition 

Score which has a potential range from 0-10, where the Condition Score is the re-scaled average of 

the three indices: 

 

Condition Score = (CE * 2 + PAI * 5 + LBA * 1) / 3 
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Figure 1 Location of the field observations.   

Black triangles indicate site visits in 2014, while the pink crosses display sampling 

locations during the 20I6 / 2017 campaign.  

 

Remote-sensed data (independent data) 

The approach used in this current study for independent data, followed the structure described by 

Cunningham et al (2013b), with some notable differences.  The source and therefore the 

specifications of the remote-sensed independent data have varied over the series of stand condition 

models within the Murray-Darling Basin (Cunningham, et al. 2009b,c, 2011, 2013b), and these 

processes undoubtedly influence the current inputs and processes.  Models were initially developed 

using Landsat imagery across several years (2003, 2008, 2009, and 2010), as this platform provided a 

low cost yet effective option for data with reasonable grain size (30m pixel).  However, these models 

only covered the southern section of the basin largely defined by the mid and lowers reaches of the 

Murray River (Cunningham et al. 2013a).  
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During 2012 errors began to appear in Landsat imagery, and it appeared that the reliability of the 

satellite was waning.  In 2013 the opportunity arose to use RapidEye imagery to develop stand 

condition models across the entire Murray-Darling Basin with a finer spatial resolution (5m pixels), 

and with similar spectral characteristics.  There were many pros and cons to using data of this finer 

resolution (Cunningham 2013b).  Apart from the increased costs of data acquisition, a further 

negative aspect was the increase in data volume by a factor of nine, and the commensurate increase 

in the number of individual imagery tiles that were required to assemble and mosaic together to 

cover the Basin.  While these data were masked to regions of extant floodplain vegetation, this 

added substantially to the data preparation required prior to modelling, and to the model 

application processes used to generate the mapped outputs, as file sizes were also nine-times larger 

than those derived from Landsat data.  The modelling tool that resulted from that study was found 

to be useful and accurate (Cunningham 2013b), however the data preparation requirement and 

processing load were costly.   

In 2014, Landsat imagery regained reliability with the introduction of Landsat 8.  This current study 

uses the method developed in 2012 (Cunningham et al. 2013a).  Landsat imagery data for the 

current project were commissioned and supplied by Geoscience Australia. 

 

Temporal layers 

The independent data used to train and project the models are statistical summaries of the full 

complement of satellite images across each calendar year.  This has been done to counter the effect 

of variable cloud cover over any single image.  Percentiles are calculated for each Landsat 

reflectance band from the approximately 23 separate Landsat image capture events across any year 

after each capture has been subjected to a cloud and cloud shadow removal process.  Data are 

summarised at the pixel scale as median values (50th percentile) and the upper (75th percentile) and 

lower (25th percentile) quartiles.  As such, the number of samples at each pixel used to calculate the 

percentiles across a year will vary with the amount of obscuring cloud cover on the Landsat capture 

days in that year (i.e. Landsat passes over the MD Basin once every 16 days).  In combination, the 

composite images provide a stable indication of the central tendency of the reflectance data at any 

location across the Basin within a year.  

The three sets of imagery were supplied as a series of one-degree tiles by Geoscience Australia.  

These data were mosaiced together to form imagery for two larger tiles; the southern, and the 

northern basin areas (as displayed in Figure 2).  While these two composites can be mosaiced to 

cover the entire basin, the file size for the complete mosaic can be problematic for data processing 

in many software packages.   

In summary, the entire basin is generally covered by 127 individual one-degree tiles.  The 

combination of all data from all satellite-years provides a tally of 2286 tiles that are available for 

modelling (i.e. 127 Landsat tiles x 6 years (2009, 2010, 2013, 2014, 2015, 2016) x 3 quartiles).  
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Figure 2 Full extent of Landsat imagery across the Murray-Darling Basin displayed as complete 

mosaic.  Dashed line indicates the boundary between the northern and southern 

mosaics.  

 

Constant data layers 

In addition to the satellite-year summary imagery, several ‘base’ or constant independent data are 

also supplied to each model.  In contrast to the annual data, these data provide a broad but static 

view of vegetation type and extent that is relevant to forest stand condition.  
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The three constant layers were: 

MDBAVegNative:  This is a 4-layer interleaved spatial data file which provides model likelihoods 

for the presence of each of four vegetation (i.e. landcover) classes 

(unclassified, native, non-native and water).  These data were developed for 

the RapidEye-based vegetation model produced and developed for MDBA in 

2013. 

MDBAVegSpp:  This is a nine-layer interleaved spatial file which provides model likelihoods for 

the presence of each of the following vegetation classes: woody vegetation, 

wetlands, drylands, River Redgum, Blackbox, Lignum, River Cooba, Coolibah 

and River Oak.  Similarly, these data were developed for the RapidEye-based 

vegetation model produced and developed for MDBA in 2013. 

AutumnLandsat:  This is a median Landsat image comprising six bands of derived Landsat 

imagery covering the entire Murray-Darling Basin.  The median values are 

calculated from imagery across the autumnal quarter from each of the years 

between 2008 to 2012.  These data provided a stable spectral foundation to 

the models of LBA, CE, and PAI.   

 

General background to modelling  

Condition models are effectively mathematical relationships between the Condition Score and the 

component indices, and a series of remote-acquired data from satellite imagery and several base 

data layers relating to native vegetation.  These models could be developed using an enormous array 

of available statistical / numeric approaches.  Over the last decade ‘machine-learning’ (ML) 

algorithms have progressed to the point where these methods have been developed to be very rapid 

and accurate for developing models, even for ecological applications (e.g. Kocev et al. 2007).  The 

general approach to developing these types of models is to provide a ‘train’ dataset to develop the 

model, and a further exclusive dataset to ‘test’ the data.  ML methods learn the patterns from one 

sub-set of data, and test the model performance with the ‘hold-out’ dataset.  Importantly, this is not 

a single process, but is re-applied iteratively, and where the ‘test’ and ‘train’ data are continually 

randomised.  Using this approach, a full dataset can be used to develop models iteratively, and to 

gain a collective appreciation of model performance.   

In other words, while additional, newly acquired data could be sourced and used to test the models, 

model performance can be internally evaluated by partitioning the data across many iterations to 

understand the predictive power of the model for the dataset.  Therefore, it needs to be recognised 

that when these models are applied to new or novel datasets (e.g. new geographic regions that may 

have little or no training data), the performance statistics can only be indicative at best, as the model 

cannot ‘know’ about these environments, and statistical confidence in these models cannot be 

known or imputed.   

It is for this reason that it is important that the sampling design for field assessments attempt to 

adequately survey the complete study area prior to undertaking modelling.  For a region as extensive 
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as the Murray Darling Basin with a diversity of different condition states across a variety of 

environmental and geographic settings at any single point in time, it is recognised that a complete 

and adequate stratification is probably not practicable.  This issue is likely to be compounded by 

additional issues of access / tenure and distance between stratified sampling locations.  For this 

reason, a prudent strategy may be to aggregate and curate field data from across longer time 

periods and spatial extents, along with the appropriate remote sensed data, with a view to building a 

long-term data library of field and imagery data across a range of condition states.  This data library 

can then provide a robust approach to developing models, and these are likely to become 

increasingly useful for prediction as more climatic and hydrological states are sampled.   

 

Modelling process 

The modelling process requires data from field observations (i.e. dependent data), and from the 

appropriate satellite-year image as well as the constant layers.  These data are supplied to the 

machine-learning modelling software as a data array collated into training and test data. 

The initial version of the stand condition tool developed for MDBA which covered the Murray River 

Icon sites was based upon Landsat imagery and used ‘neural-network’ type ML models developed 

using Statistica software.  Neural networks can be complex and time-consuming to develop as they 

require substantial computational time to develop the network model, and then to use this model to 

produce a mapped output.  The modelling approach used in this current study was first used with 

the 2014 Rapideye Stand Condition Tool, and uses another ML approach called Classification And 

Regression Trees (CART).  Recent experience has identified that CART models provide similar or 

superior performance to neural networks, are more rapid to develop, and have the added advantage 

of being easier to interpret and communicate to stakeholders and end-users.  These models were 

developed in the open source Clus software package. 

Random Forests (RF) were used as the specific form of CART models.  This method learns the 

selection of relevant environmental variables, and the interactions between these variables through 

multiple model iterations.  Additionally, RF overcome the inherent inaccuracies of seeking a single 

parsimonious model by constructing an ensemble model from the multiple model iterations.  RF 

models are well suited to large sets with numerous independent variables, many of which may be 

highly correlated.  This modelling technique creates a forest of regression trees.  The algorithm 

randomly selects a small number of independent variables at each branch of the tree from all 

available variables, and creates the node on the basis of the variable(s) that minimise the model 

error.  This contrasts with the neural network models used in our previous study (Cunningham et al., 

2009a) which must consider all independent variables supplied simultaneously.  While over-fitting is 

often seen as a problem in statistical modelling, predictions using regression trees for independent 

data sets are not compromised by using many predictor variables, and are generally superior to 

many other methods (e.g. Generalised Linear Models, Generalised Additive Models and Multivariate 

Adaptive Regression Splines; Elith et al. 2006).   

  

http://clus.sourceforge.net/doku.php


 

Modelling Stand Condition of the Basin - 2017    13 

Model data and methods 

Field sampling locations were matched temporally and spatially with the satellite imagery for the 

appropriate year and the constant layers.  Data was extracted from the coincident loci and 

assembled into a large data array.  This array was supplied to the Clus to develop the CART models.  

Training data were extracted at the coordinate supplied for each site or each model, and for the 

eight surrounding pixels using a -25 m, 0m and +25m offset east and north.  This allowed for minor 

year to year variations in pixel registration / alignment.  This provided nine samples from the images 

to train the models.  80% of the available site data as allocated to ‘Train data’, while the remaining 

20% of the site data was withheld and used as Test/Validation dataset (Table 3).  ‘Test’ and ‘Train’ 

data were stratified by site name rather than randomly from the whole dataset.  Hence, once a site 

has been selected as a member of the ‘Train’ or ‘Test’ set it held this assignation across multiple or 

repeat visit sites over time.  Only the centre pixel was used to assess and validate the models (i.e. 

none of the surrounding eight pixels were used for testing model performance). 

 

 Year Summary  
Satellite Year Test Train 

2009 35 140 
2010 35 140 
2013 33 139 
2014 93 383 
2015 30 120 

2016 * 34 141 

2016 # 85 347 
   

 

Table 3  Allocation of the number of train and test data for models for each year.  

  * Repeat site visits, # New sites 

 

Three different models were developed using different variations of the possible range of model 

inputs to examine the prospects for maximising model performance.  

Model 1: ‘Overall model’.  This model used observations from each year matched with all the 

relevant contemporary summaries of Landsat data.  These data were provided within a 

single large training dataset.  This model used 3 constant grids and the 3 satellite summary 

grids (upper, median and lower) for each of the 6 years.  This model was generalised to 

provide the most stable results for any given year, given the Landsat composites (i.e. 

upper, median and lower quartiles).  

Model 2: ‘Simple model’.  This model used the 3 constant grids and only the median values from the 

six, yearly summary Landsat data layers.  This model did not use the upper and lower 

quartile images supplied by Geosciences Australia.  This model was encoded into the Stand 

Condition Monitoring Tool to allow the production of any existing or future single stand 

condition map from the corresponding Landsat images, without the need for extensive 
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processing to produce the quartile images (i.e. when upper and lower quantile data are 

unavailable).  However, the preference would be to use the ‘Overall Model’, where 

possible. 

Model 3: ‘2016 Model’.  This model was created using only the 2016 and 2017 observations and the 

2016 median, upper and lower quartile images, along with the three constant layers.  The 

purpose of this model was to examine if this bespoke 2016 model would outperform the 

generalised ‘Overall Model’ (Model 1). 

 

Comparison metrics 

Model performance is most readily compared for each model by examining the correlation 

coefficients (r) between the observed and predicted values for each of the condition components 

that compose the stand condition score.  These correlations were calculated using either a) the ‘test’ 

dataset which was withheld from model development process to assess model performance with 

data that had not been used to develop the model, as well as for b) the ‘train’ data that was initially 

used to develop the model.  As would be expected, the ‘fit’ of the model using the ‘test’ data is 

generally lower than when the model is evaluated with ‘train’ data used in model development. 
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Results 

Generalised model performance 

Although three different forms of models were developed, only the ‘Overall Model’ and the ‘Simple 

Model’ can be directly compared, as both approaches use training data taken from across multiple 

years.  In contrast, the 2016 Model is based upon a more limited dataset, which negates a cross-

comparison with the other models.   

Both the ‘Overall’ and ‘Simple’ models were shown to have similar levels of performance across the 

complete time series of the data, as displayed by correlation coefficients between observed and 

predicted condition values (Table 4).  This is an interesting result considering that the ‘Overall 

Model’ had much more complex data array with which to form the model (i.e. upper and lower 

quantile data), than for the ‘Simple Model’.   

 

Model 

Condition 
Score 

Correlation 
Crown Extent 

Correlation 
Live BA 

Correlation 
PAI 

Correlation 

‘Overall Model’  0.739 0.646 0.678 0.792 

‘Simple Model’  0.717 0.627 0.640 0.793 
 

Table 4 Overall model performance for the ‘Overall’ and ‘Simple’ model, expressed as 

correlation coefficients for the Condition Score, and for component indices.  

 

When these two multi-year models were compared directly to each other, it was clear that there 

was a very high degree of congruence between these approaches (Table 5), indicating that that 

these two models were closely aligned.  This is a useful result, suggesting that the ‘Simple Model’ 

may be used with some confidence to produce similar mapped outputs of condition values, even 

when upper, median and lower quartile imagery data are unavailable.  

 

 

 

 

 

 

Table 5 Correlation between the two multi-year modelling methods for the Condition Score, 

and for component indices. 

 

  

Cross Model 
Comparison 

Condition 
Score 

Correlation 
Crown Extent 

Correlation 
Live BA 

Correlation 
PAI 

Correlation 
‘Overall Model’ 

to ‘Simple Model’ 0.969 0.951 0.929 0.987 
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Year to year consistency 

In addition to examining the multi-year performance for the ‘Overall Model’, correlation coefficients 

can also be used to examine the performance on a yearly basis through examining the model fit 

from both observed and predicted test and train data.  As indicated previously, it would be expected 

that the performance statistics would be higher for train datasets, than for test data that were 

withheld from the model development process (Table 6).  

These results indicated that the ‘Overall Model’ performed reliably well for the five modelled years.  

Model performance for 2016/17 was lower than for previous years, whether examined for fit with 

‘test’ or ‘train’ data.  Performance was particularly low for current period when evaluated with the 

test data that was withheld from the model development. 

 

Year 
 

Condition 
Score 

Correlation 

Crown 
Extent 

Correlation 
Live BA 

Correlation 
PAI 

Correlation 

Test 0.794 0.701 0.648 0.863 

2009 0.864 0.777 0.706 0.942 

2010 0.849 0.803 0.602 0.913 

2013 0.790 0.669 0.553 0.871 

2014 0.814 0.707 0.671 0.858 

2015 0.813 0.708 0.611 0.929 

2016 0.636 0.541 0.744 0.662 

Train 0.918 0.874 0.898 0.890 

2009 0.938 0.894 0.923 0.910 

2010 0.958 0.923 0.905 0.936 

2013 0.943 0.926 0.923 0.867 

2014 0.913 0.835 0.888 0.889 

2015 0.957 0.924 0.943 0.933 

2016 0.823 0.772 0.825 0.827 

     

 

Table 6 Correlation coefficients of predictive performance for the within-year models 

developed with the Overall Model approach.   

Results are shown for the Condition Score, and for component indices. 

 

Which model best represents the current stand condition? 

When considering the predictions of the most recent year 2016/17, all three modelling methods 

may be compared to each other.  The table of r values for these comparisons (Table 7) indicates that 

the ‘Overall Model’ performed the best within 2016/17, even outperforming the bespoke ‘2016/17 

Model’ (Table 7).  However, the differences in model performance between the three modelling 

methods are reasonably small.  Collectively these statistics indicate that the model performance for 
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2016/17 is relatively poor.  The ‘Overall Model’ (Model 1) developed using the median, upper and 

lower quartile imagery has the highest performance for each year, including 2016/7.  

 

Model 

Condition 
Correlation 

2016 

Crown Extent 
Correlation 

2016 

Live BA 
Correlation 

2016 

PAI 
Correlation 

2016 

 
‘Overall Model’ 

(Model 1) 0.636 0.541 0.744 0.662 
 

‘Simple Model’ 
(Model 2) 0.608 0.505 0.703 0.672 

 
‘2016/7 Model’ 

(Model 3) 
 

0.596 
 

0.483 
 

0.655 
 

0.673 
 

 

Table 7 Correlation coefficients of predictive performance for 2016 model using all three 

modelling approaches.  Results are shown for the Condition Score, and for 

component indices. 
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Observations statistics 

Currently there is a total of 1754 stand condition surveys compiled in the stand condition database.  

These observations relate to 912 individual sites/ locations.  Each observation for each site provides 

estimates for native woody vegetation of Live Basal Area (LBA), Crown Extent (CE) and Plant Area 

Index (PAI).  These measures were made in accordance with the methods detailed in (Cunningham et 

al., 2007, 2009a).  

Due to localised flooding during the recent 2016/2017 field sampling season, a small number of sites 

targeted for resampling were not accessible.  It appears that for some of these sites the sampling 

may have occurred at a new geographic location (if the GPS location is accurate), while retaining the 

original site name.  Details of these sites are provided in Table 8, and it will be important to be 

mindful for future re-visits to sample sites that the actual location will need to be recorded, and not 

simply the site name.  Models can then be based upon the actual position rather than the implied 

position from the site code or number.  

 

Site Name Site Id 
Years 

visited 
KP170 86 6 
MB127 150 4 
BN123 163 6 
KP133 88 6 
GB34A 106 6 
KP165 96 6 
GB41A 107 6 
GB10A 103 6 
BFN85 161 6 
GB101A 108 6 

 

Table 8  Sites surveyed in 2016/2017 with apparent shifts in geographic location.   
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Discussion  

 
Government agencies that are responsible for managing the environment, need to understand the 
current condition and the dynamics of natural systems over time.  This understanding is not only 
essential for improving management of these systems, but also to reliably and consistently report on 
the status of important natural assets like the Murray Darling Basin. 
 
This current project had several purposes.  The first aim was to incorporate new data from field-
based stand condition assessments and contemporary remote-sensed data to create revised models 
of riverine and floodplain forest condition across the Murray Darling basin.  These products provide 
the MDBA with a framework to monitor stand condition annually into the future and back-cast 
condition into any previous year post 1987.  
 
The second aim was to develop a Stand Condition Monitoring Tool (SCMT), which incorporated these 
machine learning models into software that could enable the MDBA to produce revised spatial 
models of stand condition as new Landsat imagery becomes available.  Additional features were 
added to the SCMT software that enable users to select a complete directory of Landsat imagery of 
individual tiles, rather than a compiled mosaic.  This feature offers the Agency considerable 
flexibility, and even enables the model to be applied to individual one degree Landsat tiles.  This 
could enable the Agency to easily / rapidly monitor individual sites or locations over time, where 
required.  
 
The results relating to the first objective of updating the stand condition model(s) indicated that the 
‘Overall Model’ (Model 1) developed using the median, upper and lower quartile imagery had the 
strongest performance when applied for each year.  However, it is important to note that the 
performance statistics for the ‘Simple Model’ were not greatly dissimilar from the ‘Overall Model’, 
despite the ‘Overall Model’ having access to a quantile data, which would result in more complex 
CART models.   
 
The interpretation of this result is not entirely clear.  A simplistic appraisal could form the view that 
model parsimony (i.e. not having the variance data), does not detract from model performance.  
Alternatively, this result could be interpreted that we are currently at the limits of the usefulness of 
Landsat reflectance in modelling stand condition.  This could be tested in future by incorporating 
other inputs such as preceding rainfall, high resolution satellite-borne radar data, groundwater data 
as it becomes available.  It is anticipated that this data would augment significant predictive power 
to the current models, however this is currently unverified.  
 
As a result, it is recommended that the ‘Overall Model’ process should be used to generate spatial 
models or ‘maps’ of stand condition for all years where the quantile data has been compiled for the 
Landsat imagery.  However, when only a single Landsat image or median image is available (i.e. 
without accompanying upper and lower quartile data), the ‘Simple Model’ (Model 2) can be used to 
generate mapped outputs of stand condition, and these maps are likely to be generally comparable 
to those made using the ‘Overall Model’.  
 
One of the curious results from this study was the decline in model performance for the 2016 within-
year model.  There are numerous possible reasons for this result, with its deviation from the pattern 
of high model performance observed for earlier years, however it will probably not be possible to 
dis-entangle which factor may have been the primary contributor.  One possible explanation is that 
in contrast to all the other years, 2016 saw a return to the high winter and spring rains more typical 
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of rainfall patterns across the eastern and southern regions of the basin prior to the onset of the 
millennial drought around 1996.  When considered in the context of the last decade rainfall, the 
recent winter/spring period across SE Australia maybe considered an outlier year. 
 
Close examination of the Landsat data did not suggest that there are data quality issues with the 
final supply of the Landsat data that was shipped from Geoscience Australia.  The second possibility 
of the base layers may have presented some issues for model performance.  The models prepared 
used the base models relating to landcover and dominant species, and these were represented as 
probabilistic models.  These base layers are the same models as supplied in the 2014 RapidEye-
based modelling tool, and were derived from extensive Victorian datasets, but with considerably less 
data from SA, NSW and QLD.  As indicated earlier, models are likely to encounter performance issues 
where they make predictions into domains / regions where they have little or no information.  This 
of course is untested presently without field observations, but if these landcover and dominant 
models fit poorly, then the performance of the stand condition models will also be impaired.  This 
issue is worthy of further investigation, including accessing existing biodiversity datasets to reinforce 
and improve the base layers.  
 
The third set of potential issues relate to field data, including aspects of the field data sampling 
methods, and with subsequent data management processes.  As regular end users of ecological field 
data acquired from various field observers /sources / taxa / ecosystems for modelling purposes, the 
authors are keenly aware from personal experience how simple and inadvertent errors in data 
handling, particularly in the use of MS Excel tables, can lead to serious subsequent declines in model 
performance.  Additionally, this can be very difficult to retrospectively track down.  
 

Possible future improvements to the predictive power of stand condition 

models 

The prospects for future improvements to stand condition models could arise from advances across 
four areas.  These include i) the modelling approach and the algorithms that are used, ii) the remote-
sensed data, iii) the base layers that regulate the model development and model expression (i.e. 
‘masks’ to constrain the model from regions with little or no field data), and the iv) the field data.  
 
Mathematical and ML models have rapidly become a cornerstone of many modern-day 
technologies, particularly in the way that that data is acquired, assimilated with other relevant 
information, and used by computers and smart devices.  The technologies and algorithms of 
‘learning’ patterns from simple or complex datasets (as opposed to conventional statistical methods) 
has surprisingly not been widely used in ecological contexts, but this is changing rapidly as the power 
and utility of these methods becomes more appreciated.  While the performance of these methods 
will undoubtedly increase with the emergence of new algorithms, the greatest potential for future 
improvements arguably will come from the routine application of ‘deep learning’ algorithms.   
 
Deep learning methods are currently employed for example in facial and voice recognition where 
they evaluate a large body of data to make a rapid prediction or decision.  In terms of how this 
would relate to modelling stand condition, this could mean that contextual information associated 
with remotely sensed data sources relevant to the field sample could be used for modelling, rather 
than the current data provided as a single 30m pixel.  Contextual information on the surrounding 
environment (e.g. adjacency to other forest, woodland, agriculture, surface water, preceding 
climatic conditions, etc.), will have a major influence on the local conditions, and how data is 
captured and reported on stand condition.  Early trials by the authors have been successful in the 
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development and early testing of deep learning methods (currently unpublished data), however they 
are not yet fully operational.  As part of this study we partially considered generalised forms of 
contextual data by including summarised median values of a 3x3 array of imagery data around the 
sample location.  This provides a means of dealing with inconsistencies in pixel registration in the 
imagery over time, and errors in field GPS location data.  It also adds more training data as slight 
variations in survey position provides varying views of the remote sensed data that are equally valid 
to the central position, although they will be spatially auto-correlated by definition. 
 
Satellite imagery has become much more widely accessible over the last decade in terms of the 
breadth of data, the systems to deliver and manipulate it as end users, as well as lower costs.  It is 
likely that these trends will continue, and an even broader suite of data will become available, and at 
finer resolutions.  For example, Copernicus Sentinel-2 data from the European Union provides a 
useful example of an instrument that is commencing to supply data at nine times the resolution of 
the Landsat platform.  Additionally, this platform provides additional sensors (e.g. radar data capable 
of providing information on vegetation structure), and with a more frequent re-sampling rate.  This 
data has the potential to substantial enhance the ability of the MDBA and other agencies to monitor 
large geographic domains at finer resolutions in the future, without abandoning legacy Landsat 5 
data series.  As a result, the general mission for considering potential improvements for remote 
sensed data for the MBDA’s needs would ideally consider developing a simple framework.  This 
framework would map out how historic, current and emerging data are compiled together in robust 
ways, with a view to support monitoring of various NRM activities, and how the impact of the 
increased data size / complexity / computational requirements can be managed effectively in the 
future.  
 
The other area where substantial improvements could be made is with the base layers, and with the 
masks that could be applied to model outputs.  As indicated earlier, these layers were originally 
developed for an earlier vegetation mapping project (Cunningham et al. 2013c), and these were 
based heavily on Victorian and other data.  Ideally a broader suite of curated botanical data would 
inform revisions of these products in the future.   
 
Substantial improvements to data processing and modelling systems have taken place since these 
products were developed.  For example, ARI recently developed a land cover model for the South 
Australian Government which covered the whole of the State.  The product was a model which 
included a hierarchy of ‘native’ or non-native land cover, water sources, structural vegetation forms, 
etc.  In total, there were more than 50 land cover ‘ideas’ produced as spatial models.  Data such as 
these could provide significant predictive power to future models, and could provide very useful 
mechanisms for constraining the stand condition model to report only to relevant features across 
the Basin.  This latter feature would minimise the risks that currently exist for the MDBA of the SCMT 
reporting to regions landscapes where the models should not apply (i.e. there is no native, woody 
vegetation present).  Improving these ‘masks’ or limits to the current model are perhaps the most 
direct and immediate approach that the MDBA could take to minimising the risks of model 
commission. 
 
Of all areas listed for potential improvement arguably the best opportunities for improving stand 
condition models will come from improving the quality of the data collected in the field.  
Mathematical models of any form or kind rely heavily upon the quality of the dependent data to 
accurately represent the feature(s) that a model is attempting to represent.  If the data provide a 
poor representation of the environmental and geographic domains of the region of interest, or do 
not fully describe the range and expressions of the features that are to be modelled, then the 
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outputs are less likely to be representative of the features, and be less useful.  Without this breadth 
in the data the model will struggle with its ability to accurately predict the training data, and to 
interpolate the environmental and geographic domains between field sites.  Additionally, this will 
limit the abilities for extrapolating into novel domains that have not previously been sampled with 
field data. 
 
The recent field campaign has made significant improvements in increasing the breadth and 
geographic extent of field.  With additional data in the future, including the sampling of some 
geographic / environmental domains that remain un-sampled, and repeat visits to at least a subs-set 
of those recently visited, further improvements in model performance and reliability would be 
expected.   
 
Machine Learning methods, as with any modelling approach, rely upon data quality. Within the 
context of the Stand Condition Monitoring Tool, it is important to consider that while sampling may 
be associated with a single sampling campaign, the data will hopefully be contributing to larger, 
coherent library of exemplars across the Basin.  Over time, these exemplars will provide a solid 
representation of the extremes of woody vegetation condition (both poor and good), as well as the 
geographic and environmental settings that riverine and floodplain ecosystem occupy.  In other 
words, a strategic longer-term strategy could be to develop a library of training data that represents 
the Basin across its full extent and expression of stand condition.  This ‘meta-experiment’ approach 
to data sampling and aggregation are at the core of why ML models perform well on making useful 
predictions for complex systems.  This approach, even philosophy, is a key strength to the basic 
premise of the Stand Condition Monitoring Tool, and its process of continual improvement.  
 
Other issues for consideration that may lead to improvements in model performance and the utility 
of the stand condition monitoring tool include the methods used for field assessments, and the use 
of ecological indices.  The field method that is currently used for assessing stand condition was 
developed to assess the condition of redgum and black box communities at TLM sites.  The spectral 
and structural characteristics of the riparian and floodplain communities that are dominated by 
these species are likely to have particular spectral signatures, and these are likely to differ from 
vegetation communities dominated by Coolibah, or Acacia stenophylla or Casaurina cunninghamia 
that dominate the northern regions of the Basin.  The current field methods would not be 
appropriate for use with other native vegetation forms such as Lignum shrublands, grasslands and 
wetlands.  It may be productive to consider reviewing the current field assessment method so that it 
can fairly and consistently represent the all ecological communities that are being assessed, while 
still aligning with the current assessment method to retain the legacy of the data collected in 2016-
2017 and earlier campaigns.  
 
Ecological indices can represent opportunities for rapid field assessments, however there can be 
false economy in their use if the indices are relatively subjective, subject to observer variation, or 
coarsely scaled and insensitive (e.g. Gorrod and Keith 2009, McCarthy et al. 2003).  For example, 
where crown extent data are recorded in categories of 0%, 1-20%, 20-40%, etc, the CE index can only 
represent a relative small number of possible states, and cannot provide finer scale discrimination 
once data is encoded in that form.  The scale and extent of the Murray-Darling Basin means that 
there will be subtle differences in the structure and floristics of native woody vegetation relevant to 
the local conditions, and these need to be captured, where possible.  This is particularly important 
where the remote-sensed platform can detect these differences, but these are not captured on the 
ground.  These types of data mis-match can contribute significantly to ‘noise’ in statistical or ML 
models.  To be clear, the use of ecological indices by themselves is not a problem and they have a 
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positive role in data simplification and communication, as ecological data can be complex and 
difficult to represent.  
 
Emerging technologies and instrumentation mean that hopefully new quantitative field based 
assessment methods will soon emerge that will provide more detailed information than previously 
possible.  For example, new laser scanning technologies that can rapidly provide quantitative data on 
vegetation structure (e.g. Leica BLK 360), and tools such as these will begin to address issues of 
subjectivity and observer variation for some (but not all) field based data collection methods. 
Whatever future improvements are made, it will be important for MDBA stand condition 
assessments that the methods and data are devised with care so data can be retrofitted to align with 
previous indices, thereby maintaining the continuity of the program while increasing capability.  
 
In conclusion, this study and the report provide details of updates to models of stand condition 
across the Murray Darling Basin, and the development and delivery of the Stand Condition 
Monitoring Tool.  This tool will support the MDBA in being able to form regularly updated views on 
stand condition, as new Landsat imagery becomes available.  The power of this tool is that the 
model is stable, and has been based upon many years of field data collection under a range of 
seasonal conditions.  This version of the tool will be suitable for use until the next campaign of field 
data sampling, at which time revised versions of the software can be efficiently incorporated into 
the modelling tool.  
 
  

https://lasers.leica-geosystems.com/blk360/blk360
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